Рассчитать высоту треугольника со сторонами 126, 123 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 123 + 55}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-126)(152-123)(152-55)}}{123}\normalsize = 54.2148447}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-126)(152-123)(152-55)}}{126}\normalsize = 52.9240151}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-126)(152-123)(152-55)}}{55}\normalsize = 121.244107}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 123 и 55 равна 54.2148447
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 123 и 55 равна 52.9240151
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 123 и 55 равна 121.244107
Ссылка на результат
?n1=126&n2=123&n3=55
Найти высоту треугольника со сторонами 122, 111 и 72
Найти высоту треугольника со сторонами 84, 79 и 41
Найти высоту треугольника со сторонами 146, 133 и 14
Найти высоту треугольника со сторонами 80, 65 и 51
Найти высоту треугольника со сторонами 136, 122 и 95
Найти высоту треугольника со сторонами 139, 82 и 73
Найти высоту треугольника со сторонами 84, 79 и 41
Найти высоту треугольника со сторонами 146, 133 и 14
Найти высоту треугольника со сторонами 80, 65 и 51
Найти высоту треугольника со сторонами 136, 122 и 95
Найти высоту треугольника со сторонами 139, 82 и 73