Рассчитать высоту треугольника со сторонами 126, 93 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 93 + 41}{2}} \normalsize = 130}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130(130-126)(130-93)(130-41)}}{93}\normalsize = 28.1413278}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130(130-126)(130-93)(130-41)}}{126}\normalsize = 20.77098}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130(130-126)(130-93)(130-41)}}{41}\normalsize = 63.8327678}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 93 и 41 равна 28.1413278
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 93 и 41 равна 20.77098
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 93 и 41 равна 63.8327678
Ссылка на результат
?n1=126&n2=93&n3=41
Найти высоту треугольника со сторонами 150, 100 и 89
Найти высоту треугольника со сторонами 94, 76 и 58
Найти высоту треугольника со сторонами 44, 43 и 34
Найти высоту треугольника со сторонами 80, 60 и 21
Найти высоту треугольника со сторонами 134, 83 и 76
Найти высоту треугольника со сторонами 68, 63 и 8
Найти высоту треугольника со сторонами 94, 76 и 58
Найти высоту треугольника со сторонами 44, 43 и 34
Найти высоту треугольника со сторонами 80, 60 и 21
Найти высоту треугольника со сторонами 134, 83 и 76
Найти высоту треугольника со сторонами 68, 63 и 8