Рассчитать высоту треугольника со сторонами 126, 93 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 93 + 42}{2}} \normalsize = 130.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130.5(130.5-126)(130.5-93)(130.5-42)}}{93}\normalsize = 30.0224292}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130.5(130.5-126)(130.5-93)(130.5-42)}}{126}\normalsize = 22.159412}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130.5(130.5-126)(130.5-93)(130.5-42)}}{42}\normalsize = 66.478236}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 93 и 42 равна 30.0224292
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 93 и 42 равна 22.159412
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 93 и 42 равна 66.478236
Ссылка на результат
?n1=126&n2=93&n3=42
Найти высоту треугольника со сторонами 138, 128 и 91
Найти высоту треугольника со сторонами 127, 121 и 37
Найти высоту треугольника со сторонами 119, 119 и 72
Найти высоту треугольника со сторонами 128, 108 и 45
Найти высоту треугольника со сторонами 145, 125 и 72
Найти высоту треугольника со сторонами 142, 121 и 41
Найти высоту треугольника со сторонами 127, 121 и 37
Найти высоту треугольника со сторонами 119, 119 и 72
Найти высоту треугольника со сторонами 128, 108 и 45
Найти высоту треугольника со сторонами 145, 125 и 72
Найти высоту треугольника со сторонами 142, 121 и 41