Рассчитать высоту треугольника со сторонами 126, 93 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{126 + 93 + 73}{2}} \normalsize = 146}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146(146-126)(146-93)(146-73)}}{93}\normalsize = 72.2832777}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146(146-126)(146-93)(146-73)}}{126}\normalsize = 53.3519431}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146(146-126)(146-93)(146-73)}}{73}\normalsize = 92.0869155}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 126, 93 и 73 равна 72.2832777
Высота треугольника опущенная с вершины A на сторону BC со сторонами 126, 93 и 73 равна 53.3519431
Высота треугольника опущенная с вершины C на сторону AB со сторонами 126, 93 и 73 равна 92.0869155
Ссылка на результат
?n1=126&n2=93&n3=73
Найти высоту треугольника со сторонами 141, 132 и 84
Найти высоту треугольника со сторонами 123, 109 и 109
Найти высоту треугольника со сторонами 122, 79 и 75
Найти высоту треугольника со сторонами 98, 87 и 75
Найти высоту треугольника со сторонами 141, 121 и 77
Найти высоту треугольника со сторонами 148, 125 и 104
Найти высоту треугольника со сторонами 123, 109 и 109
Найти высоту треугольника со сторонами 122, 79 и 75
Найти высоту треугольника со сторонами 98, 87 и 75
Найти высоту треугольника со сторонами 141, 121 и 77
Найти высоту треугольника со сторонами 148, 125 и 104