Рассчитать высоту треугольника со сторонами 127, 104 и 102

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{127 + 104 + 102}{2}} \normalsize = 166.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{166.5(166.5-127)(166.5-104)(166.5-102)}}{104}\normalsize = 99.0198329}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{166.5(166.5-127)(166.5-104)(166.5-102)}}{127}\normalsize = 81.0871073}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{166.5(166.5-127)(166.5-104)(166.5-102)}}{102}\normalsize = 100.961398}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 127, 104 и 102 равна 99.0198329
Высота треугольника опущенная с вершины A на сторону BC со сторонами 127, 104 и 102 равна 81.0871073
Высота треугольника опущенная с вершины C на сторону AB со сторонами 127, 104 и 102 равна 100.961398
Ссылка на результат
?n1=127&n2=104&n3=102