Рассчитать высоту треугольника со сторонами 127, 75 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{127 + 75 + 62}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-127)(132-75)(132-62)}}{75}\normalsize = 43.2740107}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-127)(132-75)(132-62)}}{127}\normalsize = 25.5555181}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-127)(132-75)(132-62)}}{62}\normalsize = 52.3475936}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 127, 75 и 62 равна 43.2740107
Высота треугольника опущенная с вершины A на сторону BC со сторонами 127, 75 и 62 равна 25.5555181
Высота треугольника опущенная с вершины C на сторону AB со сторонами 127, 75 и 62 равна 52.3475936
Ссылка на результат
?n1=127&n2=75&n3=62
Найти высоту треугольника со сторонами 147, 131 и 98
Найти высоту треугольника со сторонами 143, 93 и 53
Найти высоту треугольника со сторонами 120, 104 и 63
Найти высоту треугольника со сторонами 119, 83 и 70
Найти высоту треугольника со сторонами 137, 123 и 114
Найти высоту треугольника со сторонами 126, 105 и 72
Найти высоту треугольника со сторонами 143, 93 и 53
Найти высоту треугольника со сторонами 120, 104 и 63
Найти высоту треугольника со сторонами 119, 83 и 70
Найти высоту треугольника со сторонами 137, 123 и 114
Найти высоту треугольника со сторонами 126, 105 и 72