Рассчитать высоту треугольника со сторонами 128, 101 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 101 + 33}{2}} \normalsize = 131}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{131(131-128)(131-101)(131-33)}}{101}\normalsize = 21.2852405}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{131(131-128)(131-101)(131-33)}}{128}\normalsize = 16.7953851}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{131(131-128)(131-101)(131-33)}}{33}\normalsize = 65.1457362}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 101 и 33 равна 21.2852405
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 101 и 33 равна 16.7953851
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 101 и 33 равна 65.1457362
Ссылка на результат
?n1=128&n2=101&n3=33
Найти высоту треугольника со сторонами 124, 116 и 23
Найти высоту треугольника со сторонами 139, 79 и 67
Найти высоту треугольника со сторонами 98, 83 и 81
Найти высоту треугольника со сторонами 137, 108 и 51
Найти высоту треугольника со сторонами 111, 97 и 24
Найти высоту треугольника со сторонами 114, 105 и 17
Найти высоту треугольника со сторонами 139, 79 и 67
Найти высоту треугольника со сторонами 98, 83 и 81
Найти высоту треугольника со сторонами 137, 108 и 51
Найти высоту треугольника со сторонами 111, 97 и 24
Найти высоту треугольника со сторонами 114, 105 и 17