Рассчитать высоту треугольника со сторонами 128, 101 и 78
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 101 + 78}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-128)(153.5-101)(153.5-78)}}{101}\normalsize = 77.9984603}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-128)(153.5-101)(153.5-78)}}{128}\normalsize = 61.54566}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-128)(153.5-101)(153.5-78)}}{78}\normalsize = 100.998006}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 101 и 78 равна 77.9984603
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 101 и 78 равна 61.54566
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 101 и 78 равна 100.998006
Ссылка на результат
?n1=128&n2=101&n3=78
Найти высоту треугольника со сторонами 131, 99 и 71
Найти высоту треугольника со сторонами 126, 108 и 37
Найти высоту треугольника со сторонами 115, 105 и 95
Найти высоту треугольника со сторонами 95, 60 и 43
Найти высоту треугольника со сторонами 103, 65 и 57
Найти высоту треугольника со сторонами 115, 112 и 51
Найти высоту треугольника со сторонами 126, 108 и 37
Найти высоту треугольника со сторонами 115, 105 и 95
Найти высоту треугольника со сторонами 95, 60 и 43
Найти высоту треугольника со сторонами 103, 65 и 57
Найти высоту треугольника со сторонами 115, 112 и 51