Рассчитать высоту треугольника со сторонами 114, 88 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{114 + 88 + 50}{2}} \normalsize = 126}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126(126-114)(126-88)(126-50)}}{88}\normalsize = 47.4921481}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126(126-114)(126-88)(126-50)}}{114}\normalsize = 36.6606056}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126(126-114)(126-88)(126-50)}}{50}\normalsize = 83.5861807}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 114, 88 и 50 равна 47.4921481
Высота треугольника опущенная с вершины A на сторону BC со сторонами 114, 88 и 50 равна 36.6606056
Высота треугольника опущенная с вершины C на сторону AB со сторонами 114, 88 и 50 равна 83.5861807
Ссылка на результат
?n1=114&n2=88&n3=50
Найти высоту треугольника со сторонами 119, 106 и 98
Найти высоту треугольника со сторонами 139, 120 и 36
Найти высоту треугольника со сторонами 147, 144 и 35
Найти высоту треугольника со сторонами 129, 122 и 91
Найти высоту треугольника со сторонами 113, 76 и 64
Найти высоту треугольника со сторонами 135, 90 и 89
Найти высоту треугольника со сторонами 139, 120 и 36
Найти высоту треугольника со сторонами 147, 144 и 35
Найти высоту треугольника со сторонами 129, 122 и 91
Найти высоту треугольника со сторонами 113, 76 и 64
Найти высоту треугольника со сторонами 135, 90 и 89