Рассчитать высоту треугольника со сторонами 128, 104 и 53
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 104 + 53}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-128)(142.5-104)(142.5-53)}}{104}\normalsize = 51.3133032}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-128)(142.5-104)(142.5-53)}}{128}\normalsize = 41.6920588}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-128)(142.5-104)(142.5-53)}}{53}\normalsize = 100.690255}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 104 и 53 равна 51.3133032
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 104 и 53 равна 41.6920588
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 104 и 53 равна 100.690255
Ссылка на результат
?n1=128&n2=104&n3=53
Найти высоту треугольника со сторонами 133, 102 и 38
Найти высоту треугольника со сторонами 59, 56 и 4
Найти высоту треугольника со сторонами 94, 90 и 14
Найти высоту треугольника со сторонами 138, 129 и 124
Найти высоту треугольника со сторонами 118, 101 и 32
Найти высоту треугольника со сторонами 129, 105 и 38
Найти высоту треугольника со сторонами 59, 56 и 4
Найти высоту треугольника со сторонами 94, 90 и 14
Найти высоту треугольника со сторонами 138, 129 и 124
Найти высоту треугольника со сторонами 118, 101 и 32
Найти высоту треугольника со сторонами 129, 105 и 38