Рассчитать высоту треугольника со сторонами 128, 107 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 107 + 36}{2}} \normalsize = 135.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135.5(135.5-128)(135.5-107)(135.5-36)}}{107}\normalsize = 31.7307595}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135.5(135.5-128)(135.5-107)(135.5-36)}}{128}\normalsize = 26.5249318}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135.5(135.5-128)(135.5-107)(135.5-36)}}{36}\normalsize = 94.3108686}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 107 и 36 равна 31.7307595
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 107 и 36 равна 26.5249318
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 107 и 36 равна 94.3108686
Ссылка на результат
?n1=128&n2=107&n3=36
Найти высоту треугольника со сторонами 100, 66 и 54
Найти высоту треугольника со сторонами 129, 91 и 49
Найти высоту треугольника со сторонами 150, 122 и 66
Найти высоту треугольника со сторонами 148, 141 и 81
Найти высоту треугольника со сторонами 78, 70 и 10
Найти высоту треугольника со сторонами 116, 86 и 33
Найти высоту треугольника со сторонами 129, 91 и 49
Найти высоту треугольника со сторонами 150, 122 и 66
Найти высоту треугольника со сторонами 148, 141 и 81
Найти высоту треугольника со сторонами 78, 70 и 10
Найти высоту треугольника со сторонами 116, 86 и 33