Рассчитать высоту треугольника со сторонами 128, 120 и 102
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 120 + 102}{2}} \normalsize = 175}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175(175-128)(175-120)(175-102)}}{120}\normalsize = 95.7766136}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175(175-128)(175-120)(175-102)}}{128}\normalsize = 89.7905753}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175(175-128)(175-120)(175-102)}}{102}\normalsize = 112.678369}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 120 и 102 равна 95.7766136
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 120 и 102 равна 89.7905753
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 120 и 102 равна 112.678369
Ссылка на результат
?n1=128&n2=120&n3=102
Найти высоту треугольника со сторонами 50, 43 и 39
Найти высоту треугольника со сторонами 117, 117 и 87
Найти высоту треугольника со сторонами 114, 104 и 66
Найти высоту треугольника со сторонами 98, 82 и 73
Найти высоту треугольника со сторонами 95, 70 и 59
Найти высоту треугольника со сторонами 146, 130 и 68
Найти высоту треугольника со сторонами 117, 117 и 87
Найти высоту треугольника со сторонами 114, 104 и 66
Найти высоту треугольника со сторонами 98, 82 и 73
Найти высоту треугольника со сторонами 95, 70 и 59
Найти высоту треугольника со сторонами 146, 130 и 68