Рассчитать высоту треугольника со сторонами 128, 121 и 111
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 121 + 111}{2}} \normalsize = 180}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{180(180-128)(180-121)(180-111)}}{121}\normalsize = 102.031225}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{180(180-128)(180-121)(180-111)}}{128}\normalsize = 96.4513924}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{180(180-128)(180-121)(180-111)}}{111}\normalsize = 111.223227}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 121 и 111 равна 102.031225
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 121 и 111 равна 96.4513924
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 121 и 111 равна 111.223227
Ссылка на результат
?n1=128&n2=121&n3=111
Найти высоту треугольника со сторонами 128, 104 и 38
Найти высоту треугольника со сторонами 129, 107 и 44
Найти высоту треугольника со сторонами 99, 92 и 43
Найти высоту треугольника со сторонами 141, 135 и 66
Найти высоту треугольника со сторонами 96, 93 и 28
Найти высоту треугольника со сторонами 50, 38 и 19
Найти высоту треугольника со сторонами 129, 107 и 44
Найти высоту треугольника со сторонами 99, 92 и 43
Найти высоту треугольника со сторонами 141, 135 и 66
Найти высоту треугольника со сторонами 96, 93 и 28
Найти высоту треугольника со сторонами 50, 38 и 19