Рассчитать высоту треугольника со сторонами 128, 124 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 124 + 75}{2}} \normalsize = 163.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163.5(163.5-128)(163.5-124)(163.5-75)}}{124}\normalsize = 72.6526649}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163.5(163.5-128)(163.5-124)(163.5-75)}}{128}\normalsize = 70.3822691}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163.5(163.5-128)(163.5-124)(163.5-75)}}{75}\normalsize = 120.119073}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 124 и 75 равна 72.6526649
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 124 и 75 равна 70.3822691
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 124 и 75 равна 120.119073
Ссылка на результат
?n1=128&n2=124&n3=75
Найти высоту треугольника со сторонами 147, 112 и 65
Найти высоту треугольника со сторонами 92, 87 и 42
Найти высоту треугольника со сторонами 116, 96 и 60
Найти высоту треугольника со сторонами 93, 93 и 24
Найти высоту треугольника со сторонами 85, 85 и 62
Найти высоту треугольника со сторонами 116, 86 и 52
Найти высоту треугольника со сторонами 92, 87 и 42
Найти высоту треугольника со сторонами 116, 96 и 60
Найти высоту треугольника со сторонами 93, 93 и 24
Найти высоту треугольника со сторонами 85, 85 и 62
Найти высоту треугольника со сторонами 116, 86 и 52