Рассчитать высоту треугольника со сторонами 128, 80 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 80 + 79}{2}} \normalsize = 143.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143.5(143.5-128)(143.5-80)(143.5-79)}}{80}\normalsize = 75.4568251}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143.5(143.5-128)(143.5-80)(143.5-79)}}{128}\normalsize = 47.1605157}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143.5(143.5-128)(143.5-80)(143.5-79)}}{79}\normalsize = 76.4119748}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 80 и 79 равна 75.4568251
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 80 и 79 равна 47.1605157
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 80 и 79 равна 76.4119748
Ссылка на результат
?n1=128&n2=80&n3=79
Найти высоту треугольника со сторонами 74, 63 и 27
Найти высоту треугольника со сторонами 115, 95 и 74
Найти высоту треугольника со сторонами 106, 102 и 46
Найти высоту треугольника со сторонами 129, 76 и 72
Найти высоту треугольника со сторонами 138, 124 и 17
Найти высоту треугольника со сторонами 61, 42 и 22
Найти высоту треугольника со сторонами 115, 95 и 74
Найти высоту треугольника со сторонами 106, 102 и 46
Найти высоту треугольника со сторонами 129, 76 и 72
Найти высоту треугольника со сторонами 138, 124 и 17
Найти высоту треугольника со сторонами 61, 42 и 22