Рассчитать высоту треугольника со сторонами 128, 82 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 82 + 70}{2}} \normalsize = 140}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140(140-128)(140-82)(140-70)}}{82}\normalsize = 63.699174}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140(140-128)(140-82)(140-70)}}{128}\normalsize = 40.8072834}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140(140-128)(140-82)(140-70)}}{70}\normalsize = 74.6190324}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 82 и 70 равна 63.699174
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 82 и 70 равна 40.8072834
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 82 и 70 равна 74.6190324
Ссылка на результат
?n1=128&n2=82&n3=70
Найти высоту треугольника со сторонами 139, 108 и 56
Найти высоту треугольника со сторонами 103, 79 и 52
Найти высоту треугольника со сторонами 125, 117 и 18
Найти высоту треугольника со сторонами 116, 79 и 73
Найти высоту треугольника со сторонами 137, 103 и 37
Найти высоту треугольника со сторонами 75, 71 и 9
Найти высоту треугольника со сторонами 103, 79 и 52
Найти высоту треугольника со сторонами 125, 117 и 18
Найти высоту треугольника со сторонами 116, 79 и 73
Найти высоту треугольника со сторонами 137, 103 и 37
Найти высоту треугольника со сторонами 75, 71 и 9