Рассчитать высоту треугольника со сторонами 128, 90 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 90 + 66}{2}} \normalsize = 142}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142(142-128)(142-90)(142-66)}}{90}\normalsize = 62.2879653}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142(142-128)(142-90)(142-66)}}{128}\normalsize = 43.7962256}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142(142-128)(142-90)(142-66)}}{66}\normalsize = 84.9381345}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 90 и 66 равна 62.2879653
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 90 и 66 равна 43.7962256
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 90 и 66 равна 84.9381345
Ссылка на результат
?n1=128&n2=90&n3=66
Найти высоту треугольника со сторонами 118, 115 и 62
Найти высоту треугольника со сторонами 65, 61 и 28
Найти высоту треугольника со сторонами 127, 88 и 55
Найти высоту треугольника со сторонами 150, 127 и 60
Найти высоту треугольника со сторонами 102, 55 и 50
Найти высоту треугольника со сторонами 141, 134 и 64
Найти высоту треугольника со сторонами 65, 61 и 28
Найти высоту треугольника со сторонами 127, 88 и 55
Найти высоту треугольника со сторонами 150, 127 и 60
Найти высоту треугольника со сторонами 102, 55 и 50
Найти высоту треугольника со сторонами 141, 134 и 64