Рассчитать высоту треугольника со сторонами 128, 93 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 93 + 57}{2}} \normalsize = 139}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139(139-128)(139-93)(139-57)}}{93}\normalsize = 51.645993}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139(139-128)(139-93)(139-57)}}{128}\normalsize = 37.5240418}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139(139-128)(139-93)(139-57)}}{57}\normalsize = 84.2645149}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 93 и 57 равна 51.645993
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 93 и 57 равна 37.5240418
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 93 и 57 равна 84.2645149
Ссылка на результат
?n1=128&n2=93&n3=57
Найти высоту треугольника со сторонами 103, 95 и 18
Найти высоту треугольника со сторонами 147, 124 и 61
Найти высоту треугольника со сторонами 137, 113 и 98
Найти высоту треугольника со сторонами 122, 103 и 99
Найти высоту треугольника со сторонами 111, 109 и 48
Найти высоту треугольника со сторонами 132, 129 и 46
Найти высоту треугольника со сторонами 147, 124 и 61
Найти высоту треугольника со сторонами 137, 113 и 98
Найти высоту треугольника со сторонами 122, 103 и 99
Найти высоту треугольника со сторонами 111, 109 и 48
Найти высоту треугольника со сторонами 132, 129 и 46