Рассчитать высоту треугольника со сторонами 128, 95 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{128 + 95 + 71}{2}} \normalsize = 147}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147(147-128)(147-95)(147-71)}}{95}\normalsize = 69.9439776}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147(147-128)(147-95)(147-71)}}{128}\normalsize = 51.9115459}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147(147-128)(147-95)(147-71)}}{71}\normalsize = 93.5870123}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 128, 95 и 71 равна 69.9439776
Высота треугольника опущенная с вершины A на сторону BC со сторонами 128, 95 и 71 равна 51.9115459
Высота треугольника опущенная с вершины C на сторону AB со сторонами 128, 95 и 71 равна 93.5870123
Ссылка на результат
?n1=128&n2=95&n3=71
Найти высоту треугольника со сторонами 122, 115 и 13
Найти высоту треугольника со сторонами 149, 110 и 75
Найти высоту треугольника со сторонами 107, 100 и 14
Найти высоту треугольника со сторонами 101, 56 и 54
Найти высоту треугольника со сторонами 123, 116 и 62
Найти высоту треугольника со сторонами 136, 124 и 113
Найти высоту треугольника со сторонами 149, 110 и 75
Найти высоту треугольника со сторонами 107, 100 и 14
Найти высоту треугольника со сторонами 101, 56 и 54
Найти высоту треугольника со сторонами 123, 116 и 62
Найти высоту треугольника со сторонами 136, 124 и 113