Рассчитать высоту треугольника со сторонами 129, 100 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 100 + 64}{2}} \normalsize = 146.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146.5(146.5-129)(146.5-100)(146.5-64)}}{100}\normalsize = 62.7222}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146.5(146.5-129)(146.5-100)(146.5-64)}}{129}\normalsize = 48.6218605}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146.5(146.5-129)(146.5-100)(146.5-64)}}{64}\normalsize = 98.0034375}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 100 и 64 равна 62.7222
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 100 и 64 равна 48.6218605
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 100 и 64 равна 98.0034375
Ссылка на результат
?n1=129&n2=100&n3=64
Найти высоту треугольника со сторонами 144, 97 и 59
Найти высоту треугольника со сторонами 87, 59 и 58
Найти высоту треугольника со сторонами 63, 54 и 41
Найти высоту треугольника со сторонами 107, 74 и 42
Найти высоту треугольника со сторонами 141, 115 и 94
Найти высоту треугольника со сторонами 113, 96 и 71
Найти высоту треугольника со сторонами 87, 59 и 58
Найти высоту треугольника со сторонами 63, 54 и 41
Найти высоту треугольника со сторонами 107, 74 и 42
Найти высоту треугольника со сторонами 141, 115 и 94
Найти высоту треугольника со сторонами 113, 96 и 71