Рассчитать высоту треугольника со сторонами 129, 113 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 113 + 64}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-129)(153-113)(153-64)}}{113}\normalsize = 63.9923247}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-129)(153-113)(153-64)}}{129}\normalsize = 56.0552922}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-129)(153-113)(153-64)}}{64}\normalsize = 112.986448}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 113 и 64 равна 63.9923247
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 113 и 64 равна 56.0552922
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 113 и 64 равна 112.986448
Ссылка на результат
?n1=129&n2=113&n3=64
Найти высоту треугольника со сторонами 119, 85 и 38
Найти высоту треугольника со сторонами 106, 79 и 31
Найти высоту треугольника со сторонами 81, 58 и 47
Найти высоту треугольника со сторонами 141, 141 и 134
Найти высоту треугольника со сторонами 47, 46 и 23
Найти высоту треугольника со сторонами 111, 90 и 41
Найти высоту треугольника со сторонами 106, 79 и 31
Найти высоту треугольника со сторонами 81, 58 и 47
Найти высоту треугольника со сторонами 141, 141 и 134
Найти высоту треугольника со сторонами 47, 46 и 23
Найти высоту треугольника со сторонами 111, 90 и 41