Рассчитать высоту треугольника со сторонами 129, 113 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 113 + 75}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-129)(158.5-113)(158.5-75)}}{113}\normalsize = 74.5978189}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-129)(158.5-113)(158.5-75)}}{129}\normalsize = 65.3453762}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-129)(158.5-113)(158.5-75)}}{75}\normalsize = 112.394047}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 113 и 75 равна 74.5978189
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 113 и 75 равна 65.3453762
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 113 и 75 равна 112.394047
Ссылка на результат
?n1=129&n2=113&n3=75
Найти высоту треугольника со сторонами 114, 101 и 17
Найти высоту треугольника со сторонами 115, 68 и 51
Найти высоту треугольника со сторонами 121, 67 и 58
Найти высоту треугольника со сторонами 148, 124 и 62
Найти высоту треугольника со сторонами 59, 54 и 15
Найти высоту треугольника со сторонами 130, 101 и 100
Найти высоту треугольника со сторонами 115, 68 и 51
Найти высоту треугольника со сторонами 121, 67 и 58
Найти высоту треугольника со сторонами 148, 124 и 62
Найти высоту треугольника со сторонами 59, 54 и 15
Найти высоту треугольника со сторонами 130, 101 и 100