Рассчитать высоту треугольника со сторонами 129, 116 и 52
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 116 + 52}{2}} \normalsize = 148.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148.5(148.5-129)(148.5-116)(148.5-52)}}{116}\normalsize = 51.9586521}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148.5(148.5-129)(148.5-116)(148.5-52)}}{129}\normalsize = 46.7225089}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148.5(148.5-129)(148.5-116)(148.5-52)}}{52}\normalsize = 115.907762}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 116 и 52 равна 51.9586521
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 116 и 52 равна 46.7225089
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 116 и 52 равна 115.907762
Ссылка на результат
?n1=129&n2=116&n3=52
Найти высоту треугольника со сторонами 150, 143 и 131
Найти высоту треугольника со сторонами 139, 117 и 47
Найти высоту треугольника со сторонами 102, 70 и 50
Найти высоту треугольника со сторонами 130, 109 и 50
Найти высоту треугольника со сторонами 127, 119 и 36
Найти высоту треугольника со сторонами 147, 115 и 95
Найти высоту треугольника со сторонами 139, 117 и 47
Найти высоту треугольника со сторонами 102, 70 и 50
Найти высоту треугольника со сторонами 130, 109 и 50
Найти высоту треугольника со сторонами 127, 119 и 36
Найти высоту треугольника со сторонами 147, 115 и 95