Рассчитать высоту треугольника со сторонами 129, 120 и 85

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 120 + 85}{2}} \normalsize = 167}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167(167-129)(167-120)(167-85)}}{120}\normalsize = 82.4241806}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167(167-129)(167-120)(167-85)}}{129}\normalsize = 76.6736564}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167(167-129)(167-120)(167-85)}}{85}\normalsize = 116.363549}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 120 и 85 равна 82.4241806
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 120 и 85 равна 76.6736564
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 120 и 85 равна 116.363549
Ссылка на результат
?n1=129&n2=120&n3=85