Рассчитать высоту треугольника со сторонами 129, 123 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 123 + 59}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-129)(155.5-123)(155.5-59)}}{123}\normalsize = 58.4545545}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-129)(155.5-123)(155.5-59)}}{129}\normalsize = 55.735738}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-129)(155.5-123)(155.5-59)}}{59}\normalsize = 121.862885}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 123 и 59 равна 58.4545545
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 123 и 59 равна 55.735738
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 123 и 59 равна 121.862885
Ссылка на результат
?n1=129&n2=123&n3=59
Найти высоту треугольника со сторонами 106, 106 и 38
Найти высоту треугольника со сторонами 57, 35 и 29
Найти высоту треугольника со сторонами 118, 86 и 85
Найти высоту треугольника со сторонами 108, 104 и 74
Найти высоту треугольника со сторонами 89, 80 и 52
Найти высоту треугольника со сторонами 143, 129 и 21
Найти высоту треугольника со сторонами 57, 35 и 29
Найти высоту треугольника со сторонами 118, 86 и 85
Найти высоту треугольника со сторонами 108, 104 и 74
Найти высоту треугольника со сторонами 89, 80 и 52
Найти высоту треугольника со сторонами 143, 129 и 21