Рассчитать высоту треугольника со сторонами 129, 125 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 125 + 46}{2}} \normalsize = 150}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{150(150-129)(150-125)(150-46)}}{125}\normalsize = 45.7890817}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{150(150-129)(150-125)(150-46)}}{129}\normalsize = 44.3692652}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{150(150-129)(150-125)(150-46)}}{46}\normalsize = 124.426852}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 125 и 46 равна 45.7890817
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 125 и 46 равна 44.3692652
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 125 и 46 равна 124.426852
Ссылка на результат
?n1=129&n2=125&n3=46
Найти высоту треугольника со сторонами 149, 126 и 48
Найти высоту треугольника со сторонами 103, 102 и 25
Найти высоту треугольника со сторонами 53, 53 и 48
Найти высоту треугольника со сторонами 147, 122 и 74
Найти высоту треугольника со сторонами 138, 138 и 121
Найти высоту треугольника со сторонами 147, 129 и 123
Найти высоту треугольника со сторонами 103, 102 и 25
Найти высоту треугольника со сторонами 53, 53 и 48
Найти высоту треугольника со сторонами 147, 122 и 74
Найти высоту треугольника со сторонами 138, 138 и 121
Найти высоту треугольника со сторонами 147, 129 и 123