Рассчитать высоту треугольника со сторонами 129, 127 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 127 + 86}{2}} \normalsize = 171}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{171(171-129)(171-127)(171-86)}}{127}\normalsize = 81.6177797}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{171(171-129)(171-127)(171-86)}}{129}\normalsize = 80.3523878}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{171(171-129)(171-127)(171-86)}}{86}\normalsize = 120.528582}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 127 и 86 равна 81.6177797
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 127 и 86 равна 80.3523878
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 127 и 86 равна 120.528582
Ссылка на результат
?n1=129&n2=127&n3=86
Найти высоту треугольника со сторонами 80, 75 и 44
Найти высоту треугольника со сторонами 116, 91 и 36
Найти высоту треугольника со сторонами 79, 67 и 25
Найти высоту треугольника со сторонами 85, 81 и 64
Найти высоту треугольника со сторонами 87, 78 и 62
Найти высоту треугольника со сторонами 119, 117 и 70
Найти высоту треугольника со сторонами 116, 91 и 36
Найти высоту треугольника со сторонами 79, 67 и 25
Найти высоту треугольника со сторонами 85, 81 и 64
Найти высоту треугольника со сторонами 87, 78 и 62
Найти высоту треугольника со сторонами 119, 117 и 70