Рассчитать высоту треугольника со сторонами 129, 82 и 53

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 82 + 53}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-129)(132-82)(132-53)}}{82}\normalsize = 30.5043857}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-129)(132-82)(132-53)}}{129}\normalsize = 19.3903847}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-129)(132-82)(132-53)}}{53}\normalsize = 47.1954647}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 82 и 53 равна 30.5043857
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 82 и 53 равна 19.3903847
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 82 и 53 равна 47.1954647
Ссылка на результат
?n1=129&n2=82&n3=53