Рассчитать высоту треугольника со сторонами 129, 87 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 87 + 49}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-129)(132.5-87)(132.5-49)}}{87}\normalsize = 30.5141756}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-129)(132.5-87)(132.5-49)}}{129}\normalsize = 20.5793277}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-129)(132.5-87)(132.5-49)}}{49}\normalsize = 54.1782301}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 87 и 49 равна 30.5141756
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 87 и 49 равна 20.5793277
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 87 и 49 равна 54.1782301
Ссылка на результат
?n1=129&n2=87&n3=49
Найти высоту треугольника со сторонами 96, 71 и 50
Найти высоту треугольника со сторонами 116, 103 и 85
Найти высоту треугольника со сторонами 97, 86 и 33
Найти высоту треугольника со сторонами 125, 100 и 57
Найти высоту треугольника со сторонами 112, 92 и 50
Найти высоту треугольника со сторонами 72, 72 и 69
Найти высоту треугольника со сторонами 116, 103 и 85
Найти высоту треугольника со сторонами 97, 86 и 33
Найти высоту треугольника со сторонами 125, 100 и 57
Найти высоту треугольника со сторонами 112, 92 и 50
Найти высоту треугольника со сторонами 72, 72 и 69