Рассчитать высоту треугольника со сторонами 129, 91 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 91 + 55}{2}} \normalsize = 137.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{137.5(137.5-129)(137.5-91)(137.5-55)}}{91}\normalsize = 46.5374804}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{137.5(137.5-129)(137.5-91)(137.5-55)}}{129}\normalsize = 32.8287652}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{137.5(137.5-129)(137.5-91)(137.5-55)}}{55}\normalsize = 76.9983766}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 91 и 55 равна 46.5374804
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 91 и 55 равна 32.8287652
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 91 и 55 равна 76.9983766
Ссылка на результат
?n1=129&n2=91&n3=55
Найти высоту треугольника со сторонами 121, 113 и 23
Найти высоту треугольника со сторонами 139, 115 и 105
Найти высоту треугольника со сторонами 73, 54 и 48
Найти высоту треугольника со сторонами 150, 140 и 83
Найти высоту треугольника со сторонами 127, 123 и 81
Найти высоту треугольника со сторонами 139, 102 и 72
Найти высоту треугольника со сторонами 139, 115 и 105
Найти высоту треугольника со сторонами 73, 54 и 48
Найти высоту треугольника со сторонами 150, 140 и 83
Найти высоту треугольника со сторонами 127, 123 и 81
Найти высоту треугольника со сторонами 139, 102 и 72