Рассчитать высоту треугольника со сторонами 129, 96 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{129 + 96 + 51}{2}} \normalsize = 138}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138(138-129)(138-96)(138-51)}}{96}\normalsize = 44.3816896}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138(138-129)(138-96)(138-51)}}{129}\normalsize = 33.0282341}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138(138-129)(138-96)(138-51)}}{51}\normalsize = 83.542004}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 129, 96 и 51 равна 44.3816896
Высота треугольника опущенная с вершины A на сторону BC со сторонами 129, 96 и 51 равна 33.0282341
Высота треугольника опущенная с вершины C на сторону AB со сторонами 129, 96 и 51 равна 83.542004
Ссылка на результат
?n1=129&n2=96&n3=51
Найти высоту треугольника со сторонами 111, 82 и 54
Найти высоту треугольника со сторонами 149, 115 и 40
Найти высоту треугольника со сторонами 137, 132 и 32
Найти высоту треугольника со сторонами 141, 132 и 91
Найти высоту треугольника со сторонами 125, 94 и 74
Найти высоту треугольника со сторонами 34, 20 и 20
Найти высоту треугольника со сторонами 149, 115 и 40
Найти высоту треугольника со сторонами 137, 132 и 32
Найти высоту треугольника со сторонами 141, 132 и 91
Найти высоту треугольника со сторонами 125, 94 и 74
Найти высоту треугольника со сторонами 34, 20 и 20