Рассчитать высоту треугольника со сторонами 130, 112 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 112 + 35}{2}} \normalsize = 138.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138.5(138.5-130)(138.5-112)(138.5-35)}}{112}\normalsize = 32.0877625}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138.5(138.5-130)(138.5-112)(138.5-35)}}{130}\normalsize = 27.6448415}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138.5(138.5-130)(138.5-112)(138.5-35)}}{35}\normalsize = 102.68084}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 112 и 35 равна 32.0877625
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 112 и 35 равна 27.6448415
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 112 и 35 равна 102.68084
Ссылка на результат
?n1=130&n2=112&n3=35
Найти высоту треугольника со сторонами 120, 105 и 89
Найти высоту треугольника со сторонами 143, 105 и 75
Найти высоту треугольника со сторонами 23, 23 и 11
Найти высоту треугольника со сторонами 144, 133 и 131
Найти высоту треугольника со сторонами 112, 109 и 16
Найти высоту треугольника со сторонами 95, 86 и 10
Найти высоту треугольника со сторонами 143, 105 и 75
Найти высоту треугольника со сторонами 23, 23 и 11
Найти высоту треугольника со сторонами 144, 133 и 131
Найти высоту треугольника со сторонами 112, 109 и 16
Найти высоту треугольника со сторонами 95, 86 и 10