Рассчитать высоту треугольника со сторонами 130, 113 и 103
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 113 + 103}{2}} \normalsize = 173}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173(173-130)(173-113)(173-103)}}{113}\normalsize = 98.9312455}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173(173-130)(173-113)(173-103)}}{130}\normalsize = 85.9940826}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173(173-130)(173-113)(173-103)}}{103}\normalsize = 108.536221}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 113 и 103 равна 98.9312455
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 113 и 103 равна 85.9940826
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 113 и 103 равна 108.536221
Ссылка на результат
?n1=130&n2=113&n3=103
Найти высоту треугольника со сторонами 97, 76 и 49
Найти высоту треугольника со сторонами 127, 97 и 37
Найти высоту треугольника со сторонами 96, 91 и 15
Найти высоту треугольника со сторонами 124, 102 и 42
Найти высоту треугольника со сторонами 126, 105 и 88
Найти высоту треугольника со сторонами 135, 119 и 118
Найти высоту треугольника со сторонами 127, 97 и 37
Найти высоту треугольника со сторонами 96, 91 и 15
Найти высоту треугольника со сторонами 124, 102 и 42
Найти высоту треугольника со сторонами 126, 105 и 88
Найти высоту треугольника со сторонами 135, 119 и 118