Рассчитать высоту треугольника со сторонами 130, 117 и 106

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 117 + 106}{2}} \normalsize = 176.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{176.5(176.5-130)(176.5-117)(176.5-106)}}{117}\normalsize = 100.298862}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{176.5(176.5-130)(176.5-117)(176.5-106)}}{130}\normalsize = 90.268976}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{176.5(176.5-130)(176.5-117)(176.5-106)}}{106}\normalsize = 110.707235}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 117 и 106 равна 100.298862
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 117 и 106 равна 90.268976
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 117 и 106 равна 110.707235
Ссылка на результат
?n1=130&n2=117&n3=106