Рассчитать высоту треугольника со сторонами 130, 117 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 117 + 35}{2}} \normalsize = 141}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141(141-130)(141-117)(141-35)}}{117}\normalsize = 33.9553793}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141(141-130)(141-117)(141-35)}}{130}\normalsize = 30.5598414}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141(141-130)(141-117)(141-35)}}{35}\normalsize = 113.507982}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 117 и 35 равна 33.9553793
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 117 и 35 равна 30.5598414
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 117 и 35 равна 113.507982
Ссылка на результат
?n1=130&n2=117&n3=35
Найти высоту треугольника со сторонами 22, 22 и 16
Найти высоту треугольника со сторонами 111, 92 и 91
Найти высоту треугольника со сторонами 135, 111 и 100
Найти высоту треугольника со сторонами 53, 46 и 37
Найти высоту треугольника со сторонами 149, 120 и 110
Найти высоту треугольника со сторонами 96, 90 и 82
Найти высоту треугольника со сторонами 111, 92 и 91
Найти высоту треугольника со сторонами 135, 111 и 100
Найти высоту треугольника со сторонами 53, 46 и 37
Найти высоту треугольника со сторонами 149, 120 и 110
Найти высоту треугольника со сторонами 96, 90 и 82