Рассчитать высоту треугольника со сторонами 130, 121 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 121 + 19}{2}} \normalsize = 135}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135(135-130)(135-121)(135-19)}}{121}\normalsize = 17.3057141}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135(135-130)(135-121)(135-19)}}{130}\normalsize = 16.1076262}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135(135-130)(135-121)(135-19)}}{19}\normalsize = 110.210074}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 121 и 19 равна 17.3057141
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 121 и 19 равна 16.1076262
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 121 и 19 равна 110.210074
Ссылка на результат
?n1=130&n2=121&n3=19
Найти высоту треугольника со сторонами 147, 136 и 45
Найти высоту треугольника со сторонами 146, 107 и 62
Найти высоту треугольника со сторонами 140, 118 и 50
Найти высоту треугольника со сторонами 146, 144 и 16
Найти высоту треугольника со сторонами 120, 85 и 63
Найти высоту треугольника со сторонами 71, 52 и 20
Найти высоту треугольника со сторонами 146, 107 и 62
Найти высоту треугольника со сторонами 140, 118 и 50
Найти высоту треугольника со сторонами 146, 144 и 16
Найти высоту треугольника со сторонами 120, 85 и 63
Найти высоту треугольника со сторонами 71, 52 и 20