Рассчитать высоту треугольника со сторонами 130, 88 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 88 + 67}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-130)(142.5-88)(142.5-67)}}{88}\normalsize = 61.5292313}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-130)(142.5-88)(142.5-67)}}{130}\normalsize = 41.6505566}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-130)(142.5-88)(142.5-67)}}{67}\normalsize = 80.8145127}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 88 и 67 равна 61.5292313
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 88 и 67 равна 41.6505566
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 88 и 67 равна 80.8145127
Ссылка на результат
?n1=130&n2=88&n3=67
Найти высоту треугольника со сторонами 111, 98 и 29
Найти высоту треугольника со сторонами 93, 76 и 19
Найти высоту треугольника со сторонами 121, 113 и 39
Найти высоту треугольника со сторонами 95, 81 и 22
Найти высоту треугольника со сторонами 54, 48 и 15
Найти высоту треугольника со сторонами 129, 88 и 85
Найти высоту треугольника со сторонами 93, 76 и 19
Найти высоту треугольника со сторонами 121, 113 и 39
Найти высоту треугольника со сторонами 95, 81 и 22
Найти высоту треугольника со сторонами 54, 48 и 15
Найти высоту треугольника со сторонами 129, 88 и 85