Рассчитать высоту треугольника со сторонами 130, 99 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{130 + 99 + 73}{2}} \normalsize = 151}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151(151-130)(151-99)(151-73)}}{99}\normalsize = 72.4505848}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151(151-130)(151-99)(151-73)}}{130}\normalsize = 55.1739069}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151(151-130)(151-99)(151-73)}}{73}\normalsize = 98.2549027}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 130, 99 и 73 равна 72.4505848
Высота треугольника опущенная с вершины A на сторону BC со сторонами 130, 99 и 73 равна 55.1739069
Высота треугольника опущенная с вершины C на сторону AB со сторонами 130, 99 и 73 равна 98.2549027
Ссылка на результат
?n1=130&n2=99&n3=73
Найти высоту треугольника со сторонами 127, 112 и 92
Найти высоту треугольника со сторонами 51, 47 и 38
Найти высоту треугольника со сторонами 35, 27 и 18
Найти высоту треугольника со сторонами 149, 130 и 103
Найти высоту треугольника со сторонами 86, 70 и 54
Найти высоту треугольника со сторонами 69, 56 и 34
Найти высоту треугольника со сторонами 51, 47 и 38
Найти высоту треугольника со сторонами 35, 27 и 18
Найти высоту треугольника со сторонами 149, 130 и 103
Найти высоту треугольника со сторонами 86, 70 и 54
Найти высоту треугольника со сторонами 69, 56 и 34