Рассчитать высоту треугольника со сторонами 131, 106 и 93
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 106 + 93}{2}} \normalsize = 165}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{165(165-131)(165-106)(165-93)}}{106}\normalsize = 92.1080981}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{165(165-131)(165-106)(165-93)}}{131}\normalsize = 74.5302168}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{165(165-131)(165-106)(165-93)}}{93}\normalsize = 104.983424}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 106 и 93 равна 92.1080981
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 106 и 93 равна 74.5302168
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 106 и 93 равна 104.983424
Ссылка на результат
?n1=131&n2=106&n3=93
Найти высоту треугольника со сторонами 125, 72 и 66
Найти высоту треугольника со сторонами 144, 111 и 96
Найти высоту треугольника со сторонами 122, 95 и 81
Найти высоту треугольника со сторонами 142, 134 и 111
Найти высоту треугольника со сторонами 134, 129 и 90
Найти высоту треугольника со сторонами 103, 77 и 29
Найти высоту треугольника со сторонами 144, 111 и 96
Найти высоту треугольника со сторонами 122, 95 и 81
Найти высоту треугольника со сторонами 142, 134 и 111
Найти высоту треугольника со сторонами 134, 129 и 90
Найти высоту треугольника со сторонами 103, 77 и 29