Рассчитать высоту треугольника со сторонами 131, 113 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 113 + 35}{2}} \normalsize = 139.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{139.5(139.5-131)(139.5-113)(139.5-35)}}{113}\normalsize = 32.0722332}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{139.5(139.5-131)(139.5-113)(139.5-35)}}{131}\normalsize = 27.6653615}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{139.5(139.5-131)(139.5-113)(139.5-35)}}{35}\normalsize = 103.547496}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 113 и 35 равна 32.0722332
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 113 и 35 равна 27.6653615
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 113 и 35 равна 103.547496
Ссылка на результат
?n1=131&n2=113&n3=35
Найти высоту треугольника со сторонами 63, 63 и 52
Найти высоту треугольника со сторонами 104, 74 и 47
Найти высоту треугольника со сторонами 149, 124 и 66
Найти высоту треугольника со сторонами 97, 96 и 42
Найти высоту треугольника со сторонами 130, 125 и 74
Найти высоту треугольника со сторонами 92, 59 и 43
Найти высоту треугольника со сторонами 104, 74 и 47
Найти высоту треугольника со сторонами 149, 124 и 66
Найти высоту треугольника со сторонами 97, 96 и 42
Найти высоту треугольника со сторонами 130, 125 и 74
Найти высоту треугольника со сторонами 92, 59 и 43