Рассчитать высоту треугольника со сторонами 131, 124 и 116

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{131 + 124 + 116}{2}} \normalsize = 185.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{185.5(185.5-131)(185.5-124)(185.5-116)}}{124}\normalsize = 106.025048}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{185.5(185.5-131)(185.5-124)(185.5-116)}}{131}\normalsize = 100.359588}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{185.5(185.5-131)(185.5-124)(185.5-116)}}{116}\normalsize = 113.337121}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 131, 124 и 116 равна 106.025048
Высота треугольника опущенная с вершины A на сторону BC со сторонами 131, 124 и 116 равна 100.359588
Высота треугольника опущенная с вершины C на сторону AB со сторонами 131, 124 и 116 равна 113.337121
Ссылка на результат
?n1=131&n2=124&n3=116