Рассчитать высоту треугольника со сторонами 132, 100 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 100 + 57}{2}} \normalsize = 144.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{144.5(144.5-132)(144.5-100)(144.5-57)}}{100}\normalsize = 53.0399319}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{144.5(144.5-132)(144.5-100)(144.5-57)}}{132}\normalsize = 40.1817666}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{144.5(144.5-132)(144.5-100)(144.5-57)}}{57}\normalsize = 93.0525121}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 100 и 57 равна 53.0399319
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 100 и 57 равна 40.1817666
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 100 и 57 равна 93.0525121
Ссылка на результат
?n1=132&n2=100&n3=57
Найти высоту треугольника со сторонами 89, 73 и 45
Найти высоту треугольника со сторонами 81, 80 и 76
Найти высоту треугольника со сторонами 39, 34 и 28
Найти высоту треугольника со сторонами 147, 87 и 83
Найти высоту треугольника со сторонами 144, 125 и 35
Найти высоту треугольника со сторонами 107, 103 и 59
Найти высоту треугольника со сторонами 81, 80 и 76
Найти высоту треугольника со сторонами 39, 34 и 28
Найти высоту треугольника со сторонами 147, 87 и 83
Найти высоту треугольника со сторонами 144, 125 и 35
Найти высоту треугольника со сторонами 107, 103 и 59