Рассчитать высоту треугольника со сторонами 132, 116 и 82
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 116 + 82}{2}} \normalsize = 165}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{165(165-132)(165-116)(165-82)}}{116}\normalsize = 81.1349616}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{165(165-132)(165-116)(165-82)}}{132}\normalsize = 71.3004208}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{165(165-132)(165-116)(165-82)}}{82}\normalsize = 114.776287}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 116 и 82 равна 81.1349616
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 116 и 82 равна 71.3004208
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 116 и 82 равна 114.776287
Ссылка на результат
?n1=132&n2=116&n3=82
Найти высоту треугольника со сторонами 148, 144 и 60
Найти высоту треугольника со сторонами 33, 21 и 16
Найти высоту треугольника со сторонами 83, 78 и 21
Найти высоту треугольника со сторонами 98, 89 и 78
Найти высоту треугольника со сторонами 101, 94 и 36
Найти высоту треугольника со сторонами 136, 121 и 62
Найти высоту треугольника со сторонами 33, 21 и 16
Найти высоту треугольника со сторонами 83, 78 и 21
Найти высоту треугольника со сторонами 98, 89 и 78
Найти высоту треугольника со сторонами 101, 94 и 36
Найти высоту треугольника со сторонами 136, 121 и 62