Рассчитать высоту треугольника со сторонами 132, 123 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 123 + 15}{2}} \normalsize = 135}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135(135-132)(135-123)(135-15)}}{123}\normalsize = 12.4174849}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135(135-132)(135-123)(135-15)}}{132}\normalsize = 11.5708382}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135(135-132)(135-123)(135-15)}}{15}\normalsize = 101.823376}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 123 и 15 равна 12.4174849
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 123 и 15 равна 11.5708382
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 123 и 15 равна 101.823376
Ссылка на результат
?n1=132&n2=123&n3=15
Найти высоту треугольника со сторонами 130, 117 и 114
Найти высоту треугольника со сторонами 146, 117 и 30
Найти высоту треугольника со сторонами 126, 118 и 22
Найти высоту треугольника со сторонами 139, 134 и 112
Найти высоту треугольника со сторонами 145, 136 и 48
Найти высоту треугольника со сторонами 141, 107 и 56
Найти высоту треугольника со сторонами 146, 117 и 30
Найти высоту треугольника со сторонами 126, 118 и 22
Найти высоту треугольника со сторонами 139, 134 и 112
Найти высоту треугольника со сторонами 145, 136 и 48
Найти высоту треугольника со сторонами 141, 107 и 56