Рассчитать высоту треугольника со сторонами 132, 132 и 121
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{132 + 132 + 121}{2}} \normalsize = 192.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{192.5(192.5-132)(192.5-132)(192.5-121)}}{132}\normalsize = 107.542425}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{192.5(192.5-132)(192.5-132)(192.5-121)}}{132}\normalsize = 107.542425}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{192.5(192.5-132)(192.5-132)(192.5-121)}}{121}\normalsize = 117.31901}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 132, 132 и 121 равна 107.542425
Высота треугольника опущенная с вершины A на сторону BC со сторонами 132, 132 и 121 равна 107.542425
Высота треугольника опущенная с вершины C на сторону AB со сторонами 132, 132 и 121 равна 117.31901
Ссылка на результат
?n1=132&n2=132&n3=121
Найти высоту треугольника со сторонами 69, 61 и 23
Найти высоту треугольника со сторонами 74, 68 и 33
Найти высоту треугольника со сторонами 124, 71 и 62
Найти высоту треугольника со сторонами 150, 137 и 102
Найти высоту треугольника со сторонами 105, 105 и 32
Найти высоту треугольника со сторонами 56, 40 и 35
Найти высоту треугольника со сторонами 74, 68 и 33
Найти высоту треугольника со сторонами 124, 71 и 62
Найти высоту треугольника со сторонами 150, 137 и 102
Найти высоту треугольника со сторонами 105, 105 и 32
Найти высоту треугольника со сторонами 56, 40 и 35