Рассчитать высоту треугольника со сторонами 133, 104 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 104 + 58}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-133)(147.5-104)(147.5-58)}}{104}\normalsize = 55.4923113}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-133)(147.5-104)(147.5-58)}}{133}\normalsize = 43.392484}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-133)(147.5-104)(147.5-58)}}{58}\normalsize = 99.5034547}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 104 и 58 равна 55.4923113
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 104 и 58 равна 43.392484
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 104 и 58 равна 99.5034547
Ссылка на результат
?n1=133&n2=104&n3=58
Найти высоту треугольника со сторонами 73, 73 и 52
Найти высоту треугольника со сторонами 109, 91 и 32
Найти высоту треугольника со сторонами 91, 79 и 65
Найти высоту треугольника со сторонами 148, 139 и 139
Найти высоту треугольника со сторонами 92, 79 и 77
Найти высоту треугольника со сторонами 134, 132 и 19
Найти высоту треугольника со сторонами 109, 91 и 32
Найти высоту треугольника со сторонами 91, 79 и 65
Найти высоту треугольника со сторонами 148, 139 и 139
Найти высоту треугольника со сторонами 92, 79 и 77
Найти высоту треугольника со сторонами 134, 132 и 19