Рассчитать высоту треугольника со сторонами 133, 105 и 79
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 105 + 79}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-133)(158.5-105)(158.5-79)}}{105}\normalsize = 78.9743164}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-133)(158.5-105)(158.5-79)}}{133}\normalsize = 62.3481445}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-133)(158.5-105)(158.5-79)}}{79}\normalsize = 104.965864}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 105 и 79 равна 78.9743164
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 105 и 79 равна 62.3481445
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 105 и 79 равна 104.965864
Ссылка на результат
?n1=133&n2=105&n3=79
Найти высоту треугольника со сторонами 123, 81 и 75
Найти высоту треугольника со сторонами 46, 40 и 26
Найти высоту треугольника со сторонами 147, 97 и 81
Найти высоту треугольника со сторонами 119, 84 и 73
Найти высоту треугольника со сторонами 150, 122 и 106
Найти высоту треугольника со сторонами 129, 103 и 61
Найти высоту треугольника со сторонами 46, 40 и 26
Найти высоту треугольника со сторонами 147, 97 и 81
Найти высоту треугольника со сторонами 119, 84 и 73
Найти высоту треугольника со сторонами 150, 122 и 106
Найти высоту треугольника со сторонами 129, 103 и 61