Рассчитать высоту треугольника со сторонами 133, 108 и 104
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 108 + 104}{2}} \normalsize = 172.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172.5(172.5-133)(172.5-108)(172.5-104)}}{108}\normalsize = 101.607199}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172.5(172.5-133)(172.5-108)(172.5-104)}}{133}\normalsize = 82.5081017}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172.5(172.5-133)(172.5-108)(172.5-104)}}{104}\normalsize = 105.515169}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 108 и 104 равна 101.607199
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 108 и 104 равна 82.5081017
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 108 и 104 равна 105.515169
Ссылка на результат
?n1=133&n2=108&n3=104
Найти высоту треугольника со сторонами 141, 95 и 52
Найти высоту треугольника со сторонами 116, 105 и 24
Найти высоту треугольника со сторонами 76, 67 и 60
Найти высоту треугольника со сторонами 103, 81 и 45
Найти высоту треугольника со сторонами 147, 118 и 103
Найти высоту треугольника со сторонами 83, 75 и 54
Найти высоту треугольника со сторонами 116, 105 и 24
Найти высоту треугольника со сторонами 76, 67 и 60
Найти высоту треугольника со сторонами 103, 81 и 45
Найти высоту треугольника со сторонами 147, 118 и 103
Найти высоту треугольника со сторонами 83, 75 и 54