Рассчитать высоту треугольника со сторонами 133, 113 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 113 + 21}{2}} \normalsize = 133.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133.5(133.5-133)(133.5-113)(133.5-21)}}{113}\normalsize = 6.94433045}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133.5(133.5-133)(133.5-113)(133.5-21)}}{133}\normalsize = 5.90007023}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133.5(133.5-133)(133.5-113)(133.5-21)}}{21}\normalsize = 37.3671115}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 113 и 21 равна 6.94433045
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 113 и 21 равна 5.90007023
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 113 и 21 равна 37.3671115
Ссылка на результат
?n1=133&n2=113&n3=21
Найти высоту треугольника со сторонами 50, 45 и 8
Найти высоту треугольника со сторонами 94, 75 и 63
Найти высоту треугольника со сторонами 140, 130 и 91
Найти высоту треугольника со сторонами 107, 99 и 50
Найти высоту треугольника со сторонами 95, 79 и 61
Найти высоту треугольника со сторонами 114, 114 и 22
Найти высоту треугольника со сторонами 94, 75 и 63
Найти высоту треугольника со сторонами 140, 130 и 91
Найти высоту треугольника со сторонами 107, 99 и 50
Найти высоту треугольника со сторонами 95, 79 и 61
Найти высоту треугольника со сторонами 114, 114 и 22