Рассчитать высоту треугольника со сторонами 133, 123 и 121

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 123 + 121}{2}} \normalsize = 188.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{188.5(188.5-133)(188.5-123)(188.5-121)}}{123}\normalsize = 110.585857}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{188.5(188.5-133)(188.5-123)(188.5-121)}}{133}\normalsize = 102.271131}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{188.5(188.5-133)(188.5-123)(188.5-121)}}{121}\normalsize = 112.413723}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 123 и 121 равна 110.585857
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 123 и 121 равна 102.271131
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 123 и 121 равна 112.413723
Ссылка на результат
?n1=133&n2=123&n3=121